Friday, 25 November 2016

Computer Software

Computer Software:

Software is a generic term for organized collections of computer data and instructions, often broken into two major categories: system software that provides the basic non-task-specific functions of the computer, and application software which is used by users to accomplish specific tasks.

System software is responsible for controlling, integrating, and managing the individual hardware components of a computer system so that other software and the users of the system see it as a functional unit without having to be concerned with the low-level details such as transferring data from memory to disk, or rendering text onto a display. Generally, system software consists of an operating system and some fundamental utilities such as disk formatters, file managers, display managers, text editors, user authentication (login) and management tools, and networking and device control software.
                          

Application software, on the other hand, is used to accomplish specific tasks other than just running the computer system. Application software may consist of a single program, such as an image viewer; a small collection of programs (often called a software package) that work closely together to accomplish a task, such as a spreadsheet or text processing system; a larger collection (often called a software suite) of related but independent programs and packages that have a common user interface or shared data format, such as Microsoft Office, which consists of closely integrated word processor, spreadsheet, database, etc.; or a software system, such as a database management system, which is a collection of fundamental programs that may provide some service to a variety of other independent applications.
                           

à Software is a general term for the various kinds of programs used to operate computers and related devices.
  System software : Includes the operating system and all the utilities that enable the computer to function.
  Application software : Includes programs that do real work for users. For example, word processors, spreadsheets, and database management systems fall under the category of applications software.

Assembler:
An assembler is a program that takes basic computer instructions and converts them into a pattern of bits that the computer's processor can use to perform its basic operations. Some people call these instructions assembler language and others use the term assembly language.
Compiler:

A compiler is a computer program (or set of programs) that transforms source code written in a programming language (the source language) into another computer language (the target language, often having a binary form known as object code). The most common reason for wanting to transform source code is to create an executable program.
The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a lower level language (e.g., assembly language or machine code). If the compiled program can run on a computer whose CPU or operating system is different from the one on which the compiler runs, the compiler is known as a cross-compiler. A program that translates from a low level language to a higher level one is a decompiler. A program that translates between high-level languages is usually called a language translator, source to source translator, or language converter. A language rewriter is usually a program that translates the form of expressions without a change of language.


Loader:
1.      In a computer operating system , a loader is a component that locates a given program (which can be an application or, in some cases, part of the operating system itself) in offline storage (such as a hard disk ), loads it into main storage (in a personal computer, it's called random access memory ), and gives that program control of the computer (allows it to execute its instruction s).
A program that is loaded may itself contain components that are not initially loaded into main storage, but can be loaded if and when their logic is needed. In a multitasking operating system, a program that is sometimes called a dispatcher juggles the computer processor's time among different tasks and calls the loader when a program associated with a task is not already in main storage. (By program here, we mean a binary file that is the result of a programming language compilation, linkage editing, or some other program preparation process.)
2.      An operating system utility that copies programs from a storage device to main memory, where they can be executed. In addition to copying a program into main memory, the loader can also replace virtual addresses with physical addresses.
Most loaders are transparent, i.e., you cannot directly execute them, but the operating system uses them when necessary.

Linker:
1.      Also called link editor and binder, a linker is a program that combines object modules to form an executable program. Many programming languages allow you to write different pieces of code, called modules, separately. This simplifies the programming task because you can break a large program into small, more manageable pieces. Eventually, though, you need to put all the modules together. This is the job of the linker.
In addition to combining modules, a linker also replaces symbolic addresses with real addresses. Therefore, you may need to link a program even if it contains only one module.
2.      Link editors are commonly known as linkers. The compiler automatically invokes the linker as the last step in compiling a program. The linker inserts code (or maps in shared libraries) to resolve program library references, and/or combines object modules into an executable image suitable for loading into memory. On Unix-like systems, the linker is typically invoked with the ld command.
Static linking is the result of the linker copying all library routines used in the program into the executable image. This may require more disk space and memory than dynamic linking, but is both faster and more portable, since it does not require the presence of the library on the system where it is run.

Dynamic linking is accomplished by placing the name of a sharable library in the executable image. Actual linking with the library routines does not occur until the image is run, when both the executable and the library are placed in memory. An advantage of dynamic linking is that multiple programs can share a single copy of the library.
                                 

No comments:

Post a Comment